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PREFACE
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in February 1993.
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SCREENING SMOKE PERFORMANCE OF COMMERCIALLY AVAILABLE POWDERS
Il. INFRARED AND VISIBLE SCREENING BY CARBON BLACK

INTRODUCTION

Some carbon black extinction coefficients in the visible spectral region
are superior to any other screening material, however not all of the carbon
blacks with superior extinction coefficients are expected to perform as well as
titania, WP or even fog oil because a black smoke takes minimal advantage of
glare (path radiance) which significantly assists screening. Radiative transfer
calculations? comparing contrast transmittance and perceived lightness
transmittance through a carbon black versus a white smoke, such as titania,
indicate that optical depth of the carbon black smoke would have to be about
1.5 times greater than that of the titania white smoke for equivalent screening
performance. In other words when the extinction coefficient of the carbon black
in the visible region exceeds the extinction coefficient of the titania by more than
a factor of 1.5 we can expect the carbon black to be superior to titania for visible
screening. Visible screening comparisons with titania2 can be made simply by
dividing all carbon black figures of merit by 1.5. Similar comparison can be
made with fog oil and white phosphorus but in the case of white phosphorus the
low humidity yield factor of approximately 3 should be multiplied by the
extinction coefficient for the comparison.

Judging from the performance parameters3 that have been measured in
the ERDEC smoke chamber for a variety of commercial carbon black pigment
samples, the weight limited figure of merit3 of all other powder obscurants

would probably be improved in the near infrared (1.06pum) by the addition of
carbon black. The volume limited figure of merit of other powder obscurants
would probably be improved in not only the near infrared but also the mid (3-
5um) and far (8-14um) infrared because carbon black primary particles are
small enough to fill the interstitial void volume of packed powders containing
much larger particles that constitute other screening materials. The carbon
black particles have an added advantage in that they may assist in
deagglomeration of compressed screening powder mixtures. Their 10-20
nanometer primary particle diameter provides a standoff distance limiting the
surface area of contact and van der Waals forces among larger particles without
significant reductions in packing density. In fact any small reduction in packing
density due to this effect would probably be more than offset by a significant
increase in packing density due to filling of the large particle interstitial void
volume and an increase in dissemination yield.

COAGULATION OF SOOT AEROSOLS

Carbon “soot" aerosols consist of aggregates of roughly spherical
primary particles with diameters D=10-6 cm on the order of ten nanometers and
primary particle densities of p=1.86g/cm3. Coagulation of such small primary
particles can be expected to occur rapidly at mass concentrations Cm--0.1g/m3
typical of smoke chamber testing because of the large initial t=0 number
concentrations CN:




Cut=0) _ (0.1g/m*)10%m’ / cm®)
p—g—D3 (1.86g/ cm3)(%)(10’6 cm)?

Cy(r=0)= =1.03X10" / cm

To get an idea of the magnitude of the effect we have for Brownian (thermal)
coagulation of a monodisperse aerosol with constant coagulation coefficient K

C,(t=0)

CN(t) =
1+CN(t=O)%

the number concentration as a function of time t, initial number concentration
Cn(t=0) and coagulation coefficient K. The coagulation coefficient may be

expressed in terms of the air temperature T, viscosity n and Cunningham slip
correction factor C,

k-8
3n

where k is the Boltzman constant (1.38X10-16erg/°K) and

D

C =1+ %[1. 257+0.40¢ 73]

where A=0.07um is the air molecule mean free path under standard
temperature and pressure. For carbon primary particles at ambient temperature

T=293°K and 1=1.83X10-4g/cm-sec, we find that C.~23.8 and

(1.38X107'6)(293)

Leixios  (238)=140X10"cm’ / sec

K=2
3

so that an initial number concentration of 1011/cm3 of primary particles will be
reduced in one second to a number concentration of aggregates equal to

10"/ em?
1+ (10")(1.4X107%)
2

Cy(t=1sec) = =1.43X10° / cm®

with an average number of =1000 primary particles/aggregate. In fact, however
the Cunningham slip correction factor representing the aggregate takes on
values less than 23.8, that of a primary single particle. Therefore the
coagulation coefficient of the aggregate can be as small as 1/23.8 that of the
primary particles. Using this lower value for the coagulation coefficient we can
predict a lower limit aggregate size at an upper limit number concentration. We
find that after one second aggregates will contain approximately 40<N<1000




primary particles in chains. Depending on how quickly number concentration is
reduced during the pneumatic powder dissemination process, this number of
particles per aggregate could be even higher. For example, if turbulent shear
became low enough near the dissemination source for coagulation to dominate
deaggregation in the disseminator for one hundredth of a second, at
concentrations more than one hundred times greater than the chamber
concentration, we would expect bigger aggregates.

EXTINCTION SPECTRA OF SOOT AGGREGATES

Carbon black aggregates have much higher extinction coefficients in all
the wavelength bands considered compared to primary carbon black particles.
Because primary particle diameters are much smaller than the wavelengths in
the spectral regions considered, we can interpret this in terms of the Rayleigh
spheroid low frequency electromagnetic scattering theory. Both prolate and
oblate spheroidal shaped carbon aggregates have higher extinction coefficients
in the visible and IR than the roughly spherical primary particles. If conductive
chain aggregates of primary particles are modeled as distributions of prolate
spheroidal shapes, we predict extinction spectra as indicated in Figure 1 with a
reference measured curve found by averaging a number of carbon black
spectra. The refractive index data was obtained from the ERDEC data base for
soot4. If modeled as low density fluffy spherical aggregates we use the Mie
Theory to calculate the extinction spectra shown in Figure 2 where mass
median diameter (MMD) is specified in micrometers. Computed spectra should
be multiplied by the reciprocal void volume fraction for a better match with the
chamber measurements of an average carbon black sample. Although we
might expect void volume fractions of soot aggregates to be smaller, a spectral
approximate match in extinction coefficients is obtained at a void volume
fraction somewhat greater than 1/2 at the optimum diameter of approximately
0.8um. Adjustments in mass median aspect ratio and sigma G do not improve
the longer wavelength match in the spectra appearing in Figure 1; the shorter
wavelength mismatch is because we are beyond the region of applicability of
the low frequency theory. We might match measurements better with model
predictions, whether fluffy sphere or prolate spheroid, by adjusting the effective
complex refractive index due to surface contact resistance between primary
particles.
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Figure 1. Log Normal Size Distributions of Chains of Monodisperse Carbon
Particle Cross Sections Predicted Using the Rayleigh Low Frequency
Theory for Prolate Spheriods with Equatorial Semi-axis ‘a’ and a Mass
MedianGAspect Ratio ‘MMrat’ with a Geometric Standard Deviation
'sigmaG’
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CARBON BLACK MANUFACTURING

Carbon black is one of the most widely used black pigments in the
coatings industry. It provides pigmentation, conductivity and UV resistance to a
wide range of products. The fine particulate pigment material is produced by
the combustion or thermal decomposition of hydrocarbon compounds. The
different methods of production (variations in process control conditions and
feed stock) will determine the characteristics of the carbon black and thus
produce wide varieties of the pigment. Raw materials used for pigment
production are petroleum or liquid coal tar hydrocarbons, natural gas and
acetylene. Depending on the feed stock, one can produce the different blacks
known as lamp black, bone black, channel black, acetylene black, and furnace
black. For military obscuration the generic terminology of “carbon black" will be
used.

Petroleum products and coal tar products serve as the primary feed stock
for carbon black production. Some specialized carbon blacks are produced
from the exothermic decomposition of acetylene yielding high purity carbon
black having a carbon content as high as 99.5%. A typical production
sequence for a furnace black produced from an aromatic petroleum distillate
feed stock could be described as follows. The feed stock is atomized into a
stream of combustion gases at high velocity essentially cracking the petroleum
feed stock to produce carbon black and hydrogen. Reaction temperature,
residence time and carbon content of the feed stock all effect the yield and final
structure of the carbon black. Thermal black production is based on natural gas
feed stocks which undergo high temperature decomposition in the absence of
air or flames. Such reactions for thermal black production are highly
endothermic and thus are very energy intensive. The majority of production
methods result in aggregated particles consisting of primary particles generally
in the nanometer size range. In all cases of production it is possible to vary
particle size, aggregate size and surface chemistry by controlled manipulation
of reactor conditions.

ERDEC SMOKE CHAMBER MEASUREMENTS

The 14 cubic meter ERDEC smoke chamber used to measure the
performance parameters such as the electromagnetic extinction cross section

per mass of aerosol (a), yield (Y) and deposition velocity (Vp) was described in

the first series of these reports3. Glass fiber filters, a rotometer and vacuum
pump are used to make aerosol concentration measurements at a flow rate of
20 liters per minute. A photodiode array spectrometer measures aerosol
transmittance over the wavelength range of 0.4um-1.0um. Two FTIR
spectrometers measure aerosol transmittance over the spectral regions 0.9um-
3um and 2.5um-22um. At concentrations below a few milligrams of aerosol per
cubic meter of air a quartz crystal microbalance (QCM) and an aerodynamic
particle sizer (APS) measure aerodynamic particle size distribution. A Stanford
Research Institute sonic pneumatic nozzle is operated at 60 psi to disperse and
deaggregate powders to produce an aerosol. A mixing fan is operated
continuously in the chamber at a low speed to maintain uniform concentration




and provide a level of turbulence driving reaerosolization and impaction
approximating those components of aerosol deposition in the battlefield.
Measurements of root mean square air velocity fluctuations could have been
made and compared with typical turbulance energy dissipation rates of
1000cm2/sec? at a height of 1 meter above the groundS, but instead a mixing
fan speed was chosen that produced a homogeneous cloud within a few
seconds after dissemination was completed and where expected variations in
fan speed do not seem to significantly affect deposition rates. The aerosol
sedimentation component of deposition will of course be independent of
whether the aerosol is in a chamber or on the battlefield.

CONCLUSION

The concept of describing competing smoke materials in terms of four
measured performance parameters (extinction coefficient o, dissemination yield

Y, deposition velocity vp, and powder packing density p) has been presented
and three figures of merit based on the four performance parameters have been
introduced in the first report3 of this series. All three figures of merit are
proportional to smoke plume optical depth downwind and can be used not only
to rank performance, but also quantitatively to predict cloud plume opacities
downwind. The first figure of merit gives the square meters of smoke screening
per mass of smoke material transported and is useful in weight limited
applications such as large area smoke generators. The second figure of merit
gives the square meters of screening per volume of smoke material transported
and is useful in volume limited applications such as grenades, rockets, artillery
rounds, mortars and smoke pots. The third figure of merit gives the square
meters of screening per dollar of smoke material cost. Here for example the
weight constraint of the large area smoke generator vehicle would have to be
met first by specifying a minimum value for the first figure of merit (weight
limited) and then comparing all materials satisfying this constraint based on the
third figure of merit (financial limited).

A brief summary of the carbon black manufacturing process was given.
Testing these materials in the ERDEC smoke chamber to obtain dissemination

yield Y, deposition velocity vp and spectral extinction coefficient o from the

visible through 20pm wavelength was also described along with a description
of the coagulation process that accompanies such measurements.

Single primary particle spectra would not be expected due to the large
number concentrations. Instead we expect dendritic chains of primary particles
or larger roughly spherical fluffy aggregates. Methods for interpreting the
measured extinction coefficient spectra of aggregates were proposed. The
Rayleigh ellipsoidal theory and the Mie theory were used to compute results
based on these two aggregate conceptualizations. Computed results generally
fell below measured results which points towards the need to obtain more
representative refractive index values for dendritic and spherical clusters of
primary particles.

A wide variety of carbon black powders have been tested in the ERDEC
smoke chamber using the SRI sonic pneumatic nozzle at a pressure of 60 psi
for dissemination. Performance parameters and their figures of merit are



tabulated in Table 1 so that materials can be compared over the visible,
1.06um, 3-5um and 8-14pm spectral regions. The volume limited figure of merit
is calculated based on the particle density of 1.86g/cm3 rather than a packed
powder density because of variability in the packing density and because the
particle density represents an upper limit to the packing density. Carbon black
can potentially screen better than any other powder material in the near infrared

(1.06um). For volume limited applications carbon black can be mixed with other
screening powder materials with virtually no increase in volume because the
particles are small enough to fill the interstitial void volume among larger
screening particles. It can also improve grinding/dissemination yields when
mixed with other materials by limiting adhesion forces among larger particles.
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